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Abstract

The complex isolated IIR pole is derived. References given derive

a zero from the pole, and illustrate how they are applied to make

complex time domain filters.

We will start by deriving an IIR representation for a negative real pole,
then generalize to the complex case. A formal derivation might derive the
difference equation from a differential equation, but a heuristic derivation is
more accessible, and will be presented here.

We want a unity gain negative real pole, a “leaky integrator”. Let ǫ be a
positive real number much smaller than one. A good guess is:

yk = (1 − ǫ)yk−1 + ǫxk (1)

It is not obvious from the right side of the equation that the gain is unity,
because of the yk−1 term. The steady state is defined by the condition where
xk = xk−1 for many iterations. The filter does not need to operate in the
steady state, but the steady state is useful for discovering the properties of
the filter. In the steady state yk = yk−1. If we assume the gain is unity, then
xk = yk . Then the equation becomes

yk = (1 − ǫ)xk + ǫxk (2)

Since (1− ǫ)+ ǫ = 1, our original equation is consistent with our assump-
tion that the gain is unity. If we accept this, then we must look at decay rate
and the complex case.
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If xk = 1 for a long time, then yk = 1 also. If after being constant a long
time xk = 0 for the rest of time, then yk will decay exponentially. This is
because with xk zero, the equation becomes:

yk = (1 − ǫ)yk−1 (3)

Each yk is a fraction less than one of the previous yk. The fraction is the
same each time. We recognize this as exponential decay. Furthermore, the
amount of decay in one sample interval T is the multiplicative factor (1− ǫ).

The decay of a negative real pole in an analog filter is given in terms of
continuous time t by eσpt where σp is a negative real coordinate of a pole on
the complex plane. If the continuous time interval t was equal to the discrete
time interval T , then the decay during a discrete time interval would be eσpT .
Since our filter exponentially decays by a factor of (1 − ǫ) in time T , with
the proper choice of ǫ we have (1− ǫ) = eσpT . If we replace (1− ǫ) with eσpT

then, since (1 − ǫ) + ǫ = 1, we must replace ǫ with (1 − eσpT ).
Up to this point xk and yk could be real numbers, but they will have to

be complex for the next case where we move up the frequency axis.
We assume the samples are evenly spaced in time with spacing T . At

radian frequency ω, in the steady state xk = ejωT xk−1. If we are able to
make an analogous equation with unity gain at ωp, then in the steady state
yk = ejωpT yk−1. If we change our equation to

yk = eσpT ejωpT yk−1 + (1 − eσpT )xk (4)

then the logic of equation (1) implies that this equation has unity gain
at ωp. More importantly for its validity as a pole, in the absence of an input
signal it decays exponentially at its natural frequency.

In the analog world T is reserved for temperature to compute thermal
noise in high gain circuits, and t for continuous time. While δt could be used
for discrete time, I have chosen to use t for discrete time. With this choice,
the final form of the IIR pole becomes:

yk = eσptejωptyk−1 + (1 − eσpt)xk (5)

.
This equation has unity gain at ωp. This equation can be used to derive

an FIR zero, as shown in [1]. The technique of using the isolated complex
poles and zeroes to make general complex filters is described in [2]. Example
filters are plotted in [3], which has a link to the details of the computations.
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